O.P.Code:23EE0207

the same direction.

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

		B.Tech.II Year I Semester Regular Examinations Februar ELECTROMAGNETIC FIELD THEORY	y-202	5		
		(Electrical & Electronics Engineering)				
Time:	3	Hours		k. Marks: 70		
		PART-A (Anguyar all the Overtions 10 x 2 = 20 Mayles)				
1	•	(Answer all the Questions $10 \times 2 = 20 \text{ Marks}$)	CO1	L1	23/	
1	a	Define Divergence Theorem.	CO1	L1	2M	
	b	List the properties of Vectors.			2M	
	C	Define dielectric strength.	CO2	L1	2M	
	d	Describe the expression for energy density in electrostatic field. Define lorentz force.	CO2	L1	2M	
	e		CO3	Li	2M	
	f	Define magnetic field strength.		L1	2M	
	g	Distinguish between solenoid and toroid.	CO4	L1	2M	
	h :	Describe the expression for energy stored in a magnetic field.	CO5	L2	2M	
	i	State Faraday's law of electromagnetic induction.	CO6	L1	2M	
	j	Define pointing vector.	CO6	L1	2M	
		PART-B (Anguage all Five Units 5 v. 10 = 50 Mayles)				
		(Answer all Five Units 5 x 10 = 50 Marks) UNIT-I				
2		If $B= y a_x + (x+z) a_y$ and a point Q is located at (-2,6,3) express B in cylindrical coordinates.	CO1	L3	10M	
3	a	Determine the force between the two charge Q_1 =4*10 ⁻⁴ C at A(2,3,4), Q_2 =-2*10 ⁻⁴ C at B(3,0,3) in vacuum.	CO1	L3	5M	
	b	Find E at $(0,0,2)$ m due to charged circular disc in x-y plane with ρ S=20 n C/m ² and radius 1m.	CO1	L3	5M	
		UNIT-II				
4		Explain the boundary conditions of two perfect dielectrics materials.	CO2	L4	10M	
		OR				
5	a	Find the magnitude of D and P for a dielectric material in which E=0.15 mV/m and χ =4.25.	CO2	L3	5M	
	b	A parallel plate capacitor has an area of 0.8 m ² separation of 0.1 mm with a dielectric for which $\epsilon_r = 1000$ and a field of 106 V/m. Calculate C and	CO2	L3	5M	
		V.				
		UNIT-III				
6	a	A magnetic field $B=3.5*10^{-2}a_z$ exerts a force on a 0.3 m long conductor	CO4	1.3	5M	
ŭ	••	along x axis. IF a current of 5 A flows in $-a_x$ direction, determine what		20	0111	
		force must be applied to hold conductor in position.				
	h		CO3	13	5M	
	IJ	In cylindrical coordinates B= $(2.0/r)$ a _{ϕ} tesla. Determine the magnetic flux ϕ crossing the plane surface defined by 0.5 <r<2.5 0<z<2m.<="" and="" m="" td=""><td>COS</td><td>LS</td><td>J1V1</td></r<2.5>	COS	LS	J1 V1	
		OR				
7		Determine the force per meter length between two long parallel wires A and B separated by distance 5 cm in air and carrying currents of 40 A in	CO4	L3	10M	
		11 1' 4'				

UNI	T-IV
1011	1

8	Derive the expression for self-inductance of solenoid.		L4	10M
	OR			
9	Calculate the inductance of a 10 m length of coaxial cable filled with a	CO ₅	L3	10M
	material for which μ_r = 80 and radii inner and outer conductors are 1 mm			
	and 4 mm respectively.			
	UNIT-V			
10	Write Maxwell's equation in good conductors for time varying fields and	CO6	L4	10 M
	static fields both in differential and integral form.			
	OR			
11	Explain faradays law of electromagnetic induction and there from derive	CO6	L4	10M
	maxwell's equation in differential and integral form.			
	*** END ***			

